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Abstract

Cu(I)-catalyzed intramolecular [2+2] photocycloadditions of two dicyclopentadiene derivatives linked by an
alkyl chain have been studied. These reactions are regio- and stereoselective and proceed considerably faster than
the corresponding intermolecular reactions. © 2000 Elsevier Science Ltd. All rights reserved.
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The Cu(I)-catalyzed [2+2] photocycloaddition of strained alkenes is a valuable methodology
for the synthesis of carbocyclic compounds.1 The photodimerizations of norbornenes,2 endo-
dicyclopentadienes2b and other polycyclic derivatives3 have been thoroughly studied, because of
the perspective to build, in one step and from simple molecules, complex and useful organic
frameworks incorporating cyclobutane rings. Such dimerizations were conducted intermolecularly
and often produced several isomers. Intramolecular [2+2] photocycloadditions4 are usually regio-
and stereoselective and yield isomers not observed in the corresponding intermolecular reactions, for
examplecis,syn,cis-fused cyclobutane rings. Similarly, intramolecular photocycloadditions of polycyclic
compounds could provide selective routes to polycarbocyclic molecules and to hitherto unknown
isomers. However, this particular application has never been reported.

To this end, we initiated the study of Cu(I)-catalyzed intramolecular photocycloadditions of dicy-
clopentadiene derivatives linked by removable tethers to determine the regio- and stereoselectivity of
such reactions and also to examine whether the configuration of the cyclobutane ring formed in the
cycloaddition is controlled by the tether’s length and rigidity. Herein we report the study of the first
two substrates,I and II , made ofendo-dicyclopentadiene derivatives tethered at the oxygen atom by a
six-membered alkyl chain.
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The synthesis and photoreactions ofI andII are illustrated in Scheme 1. Reduction of the enone moiety
in endo-dicyclopentadienones15 and46 using NaBH4 produced the corresponding�-alcohols2aand5a,
leaving only the ‘norbornene’ double bond available for the cycloaddition. Reaction of two moles of2 or
5 with one mole of suberic acid dichloride provided estersI or II , respectively. All photocycloadditions
shown in Scheme 1, inter- and intramolecular, were carried out in THF and occurred only in the presence
of a catalytic amount of CuOTf.7

Scheme 1.Reagents and conditions: (a) NaBH4, MeOH, 0–5°C, 80%. (b) ClCO(CH2)6COCl, pyridine, C6H6, �, 10–12 h,
75%, diastereomeric mixture; the photolysis was performed on one isolated diastereomer (II ). (c) CH3I, NaH, THF, 82%. (d)
h�, THF, CuOTf, 1 week. (e) h�, THF, CuOTf, 3 h

In the photocycloaddition reactions of2b andI , we observed that the ketal group was cleaved during
prolonged irradiation, and it is likely that the resulting ketone participated in photoreactions leading to
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a complex mixture of products. However, there was a distinct difference between the intermolecular
and intramolecular processes. In the intermolecular reaction of2b the ketal cleavage was faster than the
cycloaddition and no photodimers were recovered. The intramolecular photocycloaddition ofI proceeded
in 30% conversion in 3 h, yielding dimer3 as a mixture of two isomers (1:1). Further irradiation led
to ketal deprotection and degradation processes. Although NMR spectral data and FAB-MS clearly
indicated formation of3, determination of the stereochemistry was not possible as the two isomers could
not be separated.

Conversely, the photocycloadditions of substrates5b and II proceeded in high yields. Irradiation of
5b for 7 days afforded unreacted starting material and four photodimers:exo–trans–exoregioisomers
7 and8 in 1:1 ratio and a small amount of two additional isomers.8 The photoadducts7 and8 were
separated by column chromatography and their single-crystal X-ray structures clearly established the
exo–trans–exoconfiguration of the cyclobutane ring. The intramolecular photocycloaddition of one
isolated diastereomerII , which was complete only in 3 h, led to theexo–trans–exo6, isolated in 75%
yield.8 The1H NMR spectrum of the crude reaction mixture indicated the presence of only traces of other
isomers. Theexo–trans–exostereochemistry in6 was unambiguously deduced through single-crystal X-
ray diffraction analysis9 and is shown in Fig. 1. The tether, both in3 and6, was readily cleaved upon
reduction with LiAlH4.

Fig. 1. A perspective drawing of the (R,R) diastereomer of6, showing one conformer of three seen in the crystal structure. All
three show the identicalexo–trans–exofused ring system seen here, but differ in their torsion angles along the tether-chain

Since the tether inI and II is a long and flexible alkyl chain, we did not expect a change in the
configuration of the cyclobutane ring with respect to the intermolecular reaction. We are currently
investigating how the stereochemistry of the reaction is controlled by variations in the tether’s length
and rigidity.

In summary, the intramolecular photocycloadditions ofI andII in the presence of CuOTf, proceeded
considerably faster than the corresponding intermolecular reactions and are regio- and stereoselective.
A study of intramolecular cycloadditions of a variety of functionalized dicyclopentadienes linked by
removable tethers that can produce synthetically useful polycyclic cages is in progress.
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